$F_3: \forall x \forall y \forall z (Rxx \land ((Rxy \land Ryz) \Rightarrow Rxz) \land (Rxy \Rightarrow Ryx))$

 $F_4: \forall x \forall y \forall z (Rxx \Rightarrow Rx * z y * z)$

 $F_5: \forall x \forall y (Rxy \Rightarrow \neg Ryx).$

8. The language L consists of a single binary predicate symbol, R.

Consider the *L*-structure \mathcal{M} whose base set is $M = \{n \in \mathbb{N} : n \geq 2\}$ and in which R is interpreted by the relation 'divides', i.e. \overline{R} is defined for all integers m and $n \geq 2$ by the condition: $(m, n) \in \overline{R}$ if and only if m divides n.

(a) For each of the following formulas of L (with one free variable x), describe the set of elements of M that satisfy it.

 $F_1: \forall y (Ryx \Rightarrow x \simeq y)$

 $F_2: \forall y \forall z ((Ryx \land Rzx) \Rightarrow (Ryz \lor Rzy))$

 $F_3: \forall y \forall z (Ryx \Rightarrow (Rzy \Rightarrow Rxz))$

 $F_4: \forall t \exists y \exists z (Rtx \Rightarrow (Ryt \land Rzy \land \neg Rtz)).$

- (b) Write a formula G[x, y, z, t] of L such that for all a, b, c and d of M, the structure \mathcal{M} satisfies G[a, b, c, d] if and only if d is the greatest common divisor of a, b and c.
- (c) Let H be the following closed formula of L:

$$\forall x \forall y \forall z ((\exists t (Rtx \land Rty) \land \exists t (Rty \land Rtz)) \Rightarrow \exists t \forall u (Rut \Rightarrow (Rux \land Ruz))).$$

- (1) Find a prenex form of H.
- (2) Is the formula H satisfied in \mathcal{M} ?
- (3) Give an example of a structure $\mathcal{M}' = \langle M', \overline{R} \rangle$ such that when \mathcal{M} is replaced by \mathcal{M}' in the previous question, the answer is different.